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Given a finite dimensional vector space V there is no “natural” linear isomorphism be-

tween V and the dual space V d, but each time we fix a basis B = {vi : i ∈ I} for V there is

a dual basis B̃ = {δi : i ∈ I} for V d satisfying

δi(vj) =

0, i 6= j

1, i = j

and this allows us to define a (basis dependent) linear isomorphism between V and V d. We

denote by L(V ) the linear maps from V to V .

Definition 1. Let Mn denote the vector space of n×n complex matrices. If B is a basis of Mn,

the linear map from Mn to Md
n taking each member of B to the corresponding member of

the dual basis is denoted by DB, and is called the duality map. We let ΓB = D−1
B : Md

n →Mn

denote the inverse of this map.

Note that if f ∈ Md
n, and B is a basis of Mn, then ΓB(f) =

∑
b∈B f(b)b. In particular,

when we let E = {Eij : 1 ≤ i, j ≤ n} denote the standard matrix units, then the map

ΓE : Md
n →Mn satisfies

ΓE(f) =
n∑

i,j=1

f(Eij)Eij.

Definition 2. If f ∈ Md
n, there is a unique matrix D such that f(X) = tr(DX) for all

X ∈Mn, and we call this matrix the density matrix for f , with no requirement of positivity

for f or D.

We denote the transpose map by t : Mn → Mn, and for D ∈ Mn we write Dt instead of

t(D). We have

f(X) = tr(ΓE(f)tX) for all X ∈Mn. (1)

Thus ΓE is just the map that identifies a functional f with the transpose of its density

matrix.

This note is motivated by the following result of Paulsen-Todorov-Tomforde in Theorem

6.2 of Ref. ? , which we will see later is a restatement of the Choi-Jamio lkowski correspon-

dences? ? .

Theorem 3. The map DE : Mn → Md
n is a complete order isomorphism between these

matrix ordered spaces.
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In this paper, we will show that this theorem is very dependent on the choice of basis. In

fact, we will show that there exist orthonormal bases for Mn such that the inverse duality

map does not even send positive functionals to positive matrices. Even more intriguing, we

will show that there are “natural” orthonormal bases for Mn such that the inverse duality

map does send positive functionals to positive matrices, yet does not associate completely

positive maps with positive block matrices. These results can be interpreted as giving some

new Choi-Jamio lkowski type results.

We believe that such bases might be useful as entanglement witnesses. (We will comment

further on this after Corollary ??).

Before proceeding it will be necessary to establish some notation. The complex conjugate

of a complex number z is denoted by z̄, and the conjugate transpose of a matrix D is denoted

D∗. If D = (dij) is any matrix, then we define D = (d̄ij). Inner products are linear in the

first factor unless specified otherwise.

Recall that when we say that a vector space V is matrix ordered we mean that for each

natural number p, we have specified a cone Cp in the vector space of p × p matrices over

V, Mp(V ), which we identify as the positive elements in Mp(V ), and that these cones must

satisfy certain natural axioms, such as if A ∈ Cp and B ∈ Cq, then A⊕ B ∈ Cp+q. We also

require that if X = (xij) is a p× q matrix of scalars and A = (vij) ∈ Cp, then

X∗AX = (

p∑
k,l=1

xkivklxlj) ∈ Cq.

When there is no ambiguity we simply write Cp = Mp(V )+. See Chapter 13 of Ref. ? for

more background on matrix ordered spaces.

Matrix ordered spaces are the natural setting for studying completely positive maps.

Indeed, given matrix ordered spaces V,W we say that a linear map Φ : V → W is completely

positive provided that for each p, (vij) ∈Mp(V )+ implies that (Φ(vij)) ∈Mp(W )+. (We will

denote the map that takes (vij) to (Φ(vij)) by Φ(p), so that Φ is completely positive iff every

map Φ(p) is a positive map.) We say that Φ is a complete order isomorphism provided that

Φ is invertible and that Φ and Φ−1 are both completely positive.

The most frequently encountered example of a matrix ordered space is L(H), the

bounded linear operators on a Hilbert space H. We define the matrix ordering by iden-

tifying Mp(L(H)) = L(H ⊕ · · · ⊕ H), the bounded linear operators on the direct sum of

p copies of the Hilbert space, and declaring (Aij) ∈ Mp(L(H))+ exactly when it defines a
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positive operator on the Hilbert space H ⊕ · · · ⊕ H. More broadly, matrix ordered spaces

include operator systems : norm closed subspaces of L(H), which are self-adjoint (i.e. are

closed under the map A 7→ A∗) and unital (i.e., contain the identity). Indeed, operator sys-

tems can be characterized as matrix ordered spaces satisfying an additional axiom asserting

the existence of an element that in an order-theoretic sense acts like the identity in L(H),

see Ref. ? .

When H = Cn, the standard n-dimensional Hilbert space, we write e1, . . . , en for the

standard basis of Cn, and write 〈· , ·〉 for the inner product on Cn. We identify L(Cn) with

Mn, the set of n × n matrices with entries in C. Note that identifying Mp(Mn), the p × p

block matrices with entries from Mn, with Mpn yields the same cone of positive matrices

as when we identify Mp(Mn) with the linear maps on the direct sum of p copies of Cn,

L(Cn ⊕ · · · ⊕ Cn).

Finally, given a matrix ordered space V there is a natural way to define a matrix ordering

on the dual space V d. To do this we declare that a matrix of functionals (fij) ∈ Mp(V
d)

belongs to Mp(V
d)+ if and only if the linear map Φ : V → Mp given by Φ(v) = (fij(v)) is

completely positive.

In this paper we will be concerned with examining various natural bases B for Mn and

determining whether or not the duality map DB is a complete order isomorphism. We will

see that there exist bases for Mn such that DB is positive but not completely positive.

Since our results rely on Theorem ??, we present a new proof here, that is somewhat

simpler than the proof that appeared in Ref. ? .

Proof of Theorem ??. Rather than proving that DE is a complete order isomorphism, we

prove, equivalently, that ΓE = D−1
E : Md

n → Mn is a complete order isomorphism. We have

already seen that ΓE sends functionals to the transpose of their density matrices. Since a

functional is positive if and only if its density matrix is positive, and the transpose map is

an order isomorphism, we see that ΓE is an order isomorphism.

Now let (fk,l) ∈ Mp(M
d
n) and consider the map Φ : Mn → Mp defined by Φ(X) =

(fk,l(X)) =
∑p

k,l=1 fk,l(X)Ek,l. We must show that Φ is completely positive if and only if

Γ
(p)
E ((fk,l)) ∈Mp(Mn)+.

We have

Γ
(p)
E ((fk,l)) =

(
ΓE(fk,l)

)p
k,l=1

=
( n∑
i,j=1

fk,l(Eij)Eij

)p
k,l=1
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=

p∑
k,l=1

Ek,l ⊗ [
n∑

i,j=1

fk,l(Eij)Eij]

=
n∑

i,j=1

[

p∑
k,l=1

fk,l(Eij)Ek,l]⊗ Eij

=
n∑

i,j=1

Φ(Eij)⊗ Eij.

Since the map that takes A ⊗ B to B ⊗ A extends to a *-isomorphism of Mp ⊗Mn onto

Mn ⊗Mp, the last expression is positive iff the matrix

CΦ =
n∑

i,j=1

Eij ⊗ Φ(Eij) (2)

is positive. But this last matrix is the Choi matrix and by Choi’s theorem? the map Φ is

completely positive if and only if this block matrix is positive. Thus (fk,l) ∈Mp(Mn)+ if and

only if (ΓE(fk,l)) ∈ Mp(Mn)+ and we have shown that ΓE is a complete order isomorphism.

This completes the proof of Theorem ??. �

A map Ψ : Mn →Mn or Ψ : Md
n →Mn is called a co-positive order isomorphism provided

that its composition t◦Ψ with the transpose map t on Mn is a complete order isomorphism.

Corollary 4. The linear map from Md
n to Mn that takes a functional to its density matrix

is a co-positive order isomorphism.

Proof. As remarked in connection with equation (??), the map that takes a functional to

its density matrix is t ◦ ΓE .

Now that we have a complete order isomorphism DE between Mn and Md
n, in order to

determine whether or not other maps between Mn and Md
n are complete order isomorphisms,

it will be convenient to work with a map D̃B : Mn →Mn instead of DB : Mn →Md
n.

Definition 5. Let B be a basis of Mn and E the standard basis of matrix units. Then we

define D̃B : Mn →Mn by D̃B = ΓE ◦ DB.

Note that since ΓE is a complete order isomorphism, DB will be a complete order isomor-

phism if and only if D̃B is a complete order isomorphism.

Recall that E = {Eij} is an orthonormal basis for Mn with respect to the Hilbert-

Schmidt inner product, which we denote by 〈A,B〉 = tr(AB∗), where tr : Mn → C denotes
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the unnormalized trace, tr(A) =
∑n

i=1 aii. We fix an order for the basis E , and represent

elements in L(Mn) as n2 × n2 matrices. Given L ∈ L(Mn) we write [L] for the matrix for

L with respect to the basis E . For an n2 × n2 matrix M , we denote its transpose by MT ,

to distinguish this transpose from the transpose t on Mn, and M∗ denotes the conjugate

transpose. If L ∈ L(Mn), then L∗ denotes the adjoint with respect to the Hilbert-Schmidt

inner product, i.e, 〈L∗(A), B〉 = 〈A,L(B)〉 for all A,B ∈Mn, and we have [L]∗ = [L∗].

Definition 6. Let B be a basis of Mn and E the standard basis of matrix units. A change

of basis map is any linear map CB in L(Mn) taking the set E to the set B. By slight

abuse of notation, we write CT
B for the unique linear map in L(Mn) whose matrix in the

standard basis E is the transpose of the matrix of CB, so that [CT
B ] = [CB]T . We define

MB = CBC
T
B ∈ L(Mn).

Since a linear map is uniquely determined by its values on a basis, we see that a change

of basis map is uniquely determined up to re-orderings of the basis elements. Thus, in the

setting of Mn there will be (n2)! change of basis maps. However, the map MB is independent

of the choice of change of basis map or matrix. Indeed, fix one change of basis map CB.

Then every change of basis map has the form CB ◦ P , where P ∈Mn is a linear map which

permutes the basis E . Since P sends the orthonormal basis E to itself, its matrix in that

basis is orthogonal. Thus MB is unchanged if we replace CB by CBP .

Fortunately, we will find that the results that we seek depend on MB and are independent

of the choice of change of basis map CB. In particular, our conditions determining when the

duality map DB is an order isomorphism or a complete order isomorphism will be expressed

in terms of the map MB.

Theorem 7. If B is a basis of Mn, then the duality map is given by DB = DE ◦M−1
B .

Proof. Let B = {X1, . . . , Xn2}, and let {X̂1, . . . , X̂n2} ⊂ Md
n be the dual basis. Using the

fixed order for E , we write E = {E1, . . . , En2}.

Define Yj = D−1
E (X̂j) = ΓE(X̂j) ∈Mn. We are going to show

CT
BYj = Ej for all j. (3)

Recall that Y j ∈Mn is the matrix whose entries are the complex conjugates of those of Yj.

6



For each i, j, using (??)

〈Ei, C
∗
BY j〉 = 〈CBEi, Y j〉 = 〈Xi, Y j〉 = tr(XiY

∗
j〉

= tr(XiY
t
j ) = tr(Xi(ΓE(X̂j))

t)

= X̂j(Xi) = δij. (4)

It follows that C∗BY j = Ej.

For Y ∈ Mn let [Y ] ∈ Cn2
denote the coordinate vector for Y with respect to the basis

E , viewed as a column matrix. Then

ej = [Ej] = [C∗B(Y j)] = [C∗B][Y j] = [CB]∗[Yj].

Conjugating both sides of [Ej] = [CB]∗[Yj] gives

[Ej] = [CB]T [Yj] = [CT
B ][Yj] = [CT

BYj],

proving (??).

Now

CBC
T
BD−1
E X̂j = CBC

T
BYj = CBEj = Xj = D−1

B X̂j,

so by linearity MBD−1
E = D−1

B . Thus DB = DEM−1
B .

Notation. If C ∈ Mn, then ΦC : Mn → Mn is the completely positive map defined by

ΦC(X) = CXC∗.

Recall that a map Ψ : Mn → Mp is called completely co-positive if and only if t ◦ Ψ is

completely positive, and a map Ψ : Mn → Mn is called a co-positive order isomorphism

provided that its composition t ◦ Ψ with the transpose map t on Mn is a complete order

isomorphism. Here the order of composition with the transpose map doesn’t matter as

shown by the next result.

Proposition 8. Let Φ : Mn → Mp then t ◦ Φ is completely positive if and only if Φ ◦ t is

completely positive.

Proof. By Choi’s result? , t ◦ Φ is completely positive if and only if
(
Φ(Eij)

t
)

is positive,

while Φ ◦ t is completely positive if and only if
(
Φ(Ej,i)

)
is positive. But these np × np

matrices are transposes of each other.
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We start with the following description of order automorphisms of Mn and their partition

into completely positive and completely co-positive maps. It is a consequence of more general

results of Kadison? relating isometries, Jordan isomorphisms, order isomorphisms, and *-

isomorphisms of C*-algebras, specialized to Mn viewed as a C*-algebra.

Lemma 9. Let Φ : Mn → Mn be an order isomorphism. Then there exists an invertible

C ∈ Mn such that either Φ = ΦC or Φ = t ◦ ΦC. In the first case, Φ is a complete order

isomorphism, and in the second case Φ is a co-positive order isomorphism. If n > 1, both

cases cannot occur simultaneously.

Proof. First assume Φ is unital, i.e., that Φ(I) = I. For Hermitian matrices A, we have

‖A‖ = sup{λ ∈ R | −λI ≤ A ≤ λI}, so a unital order isomorphism is an isometry on

Hermitian elements of Mn. It follows that Φ is an isometry on all of Mn, cf. proof of

Theorem 5 in Ref. ? . Every unital isometry on Mn is a Jordan isomorphism, i.e., preserves

the Jordan product A ◦ B = (1/2)(AB + BA), cf. Theorem 7 of Ref. ? . Every Jordan

isomorphism on Mn is a *-isomorphism or *-anti-isomorphism, cf. Corollary 11 of Ref. ? .

In the latter case, composing with the transpose map gives a *-isomorphism. It is well known

that every *-isomorphism of Mn is conjugation by a unitary, see, for example, Theorem 4.27

of Ref. ? . Thus there is a unitary U such that Φ = ΦU or Φ = t ◦ ΦU .

Finally, let Φ be an arbitrary order isomorphism. We will show Φ(I) is invertible. Observe

that 0 ≤ A ∈Mn is invertible iff A is an order unit, i.e., if for all B = B∗ ∈Mn there exists

λ ∈ R such that −λA ≤ B ≤ λA. An order isomorphism takes order units to order units,

so Φ(1) is invertible. Let D = Φ(1)1/2, and define Ψ = ΦD−1 ◦ Φ. Then Ψ is a unital

order isomorphism, so by the first paragraph there exists a unitary U such that Ψ = ΦU

or Ψ = t ◦ ΦU . Then Φ = ΦD ◦ Ψ = ΦD ◦ ΦU = ΦDU , or else Φ = ΦD ◦ t ◦ ΦU = t ◦ ΦC

where C = DtU . Note that if both cases occur then Ψ is both a *-isomorphism and a *-anti-

isomorphism, which is possible only if Mn is abelian, and that holds only when n = 1.

Note that Lemma ?? implies that a composition of two complete order isomorphisms,

or two co-positive order isomorphisms, is a complete order isomorphism, and a composition

of a complete order isomorphism and a co-positive order isomorphism (in either order) is a

co-positive order isomorphism.
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Theorem 10. Let B be a basis of Mn. Then DB is an order isomorphism iff there exists

C ∈ Mn such that either (1) MB = ΦC or (2) MB = t ◦ ΦC. In the first case, DB is a

complete order isomorphism, and in the second case it is a co-positive order isomorphism.

Proof. By Theorem ??, we have DB = DE ◦M−1
B . Since DE is a complete order isomorphism

(Theorem ??), then DB is a complete order isomorphism (respectively, co-positive order

isomorphism) if and only if MB is a complete order isomorphism (respectively, co-positive

order isomorphism). Now the theorem follows from Lemma ??.

Corollary 11. Let B = {Bj : 1 ≤ j ≤ n2} be a basis for Mn.

1. MB = ΦC for some C ∈ Mn if and only if ΓB : Md
n → Mn is a complete order

isomorphism,

2. MB = t ◦ ΦC for some C ∈ Mn if and only if t ◦ ΓB : Md
n → Mn is a complete order

isomorphism.

Proof. We prove the second statement. By Theorem ??, MB = t ◦ΦC iff DB is a co-positive

order isomorphism. This is equivalent to ΓB = D−1
B being a co-positive order isomorphism,

and hence to t ◦ ΓB being a complete order isomorphism.

Both Choi and Jamio lkowski have defined useful correspondences that associate a matrix

in Mn ⊗Mp with each linear map Φ : Mn →Mp. Choi’s correspondence is Φ 7→ CΦ, where

CΦ =
∑
ij

Eij ⊗ Φ(Eij). (5)

As remarked in the proof of Theorem ??, positivity of the Choi matrix (??) is equivalent to

positivity of
∑

ij Φ(Eij) ⊗ Eij, and it is this latter form that we generalize below. We now

describe a related correspondence defined by Jamio lkowski? . If Φ : Mn → Mp, then J (Φ)

is defined by the condition 〈J (Φ), A∗ ⊗ B〉 = 〈Φ(A), B〉 for all A ∈ Mn, B ∈ Mp. This is

equivalent to

J (Φ) =
∑
ij

E∗ij ⊗ Φ(Eij). (6)

Regarding our current investigation, the Choi matrix CΦ has the property that CΦ ≥ 0 iff

Φ is completely positive? . The Jamio lkowski correspondence has the property that in (??),

J (Φ) is unchanged if the basis {Eij} is replaced by any orthonormal basis of Mn. Our

correspondence will be closer to Choi’s.
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Corollary 12. Let B = {Bj : 1 ≤ j ≤ n2} be a basis for Mn, and let Ψ : Mn → Mp be a

linear map.

1. If MB = ΦC for some C ∈Mn, then Ψ is completely positive if and only if
∑n2

j=1 Ψ(Bj)⊗

Bj ∈ (Mp ⊗Mn)+.

2. If MB = t ◦ ΦC for some C ∈ Mn, then Ψ is completely positive if and only if∑n2

j=1 Ψ(Bj)⊗Bt
j ∈ (Mp ⊗Mn)+.

3. If MB = t ◦ ΦC for some C ∈ Mn, then Ψ is completely co-positive if and only if∑n2

j=1 Ψ(Bj)⊗Bj ∈ (Mp ⊗Mn)+.

Proof. To prove the first statement, for 1 ≤ k, l ≤ p define fk,l ∈ Md
n by Ψ(X) = (fk,l(X)).

Then by the definition of the order on Mp(M
d
n) discussed earlier, Ψ is completely posi-

tive if and only if (fk,l) ∈ Mp(M
d
n)+ which holds if and only if (ΓB(fk,l)) ∈ Mp(Mn)+, cf.

Theorem ??. But as in the proof of Theorem ??, we have that

(ΓB(fk,l)) =
n2∑
j=1

Ψ(Bj)⊗Bj.

To prove the second statement, note that Ψ is completely positive if and only if (t ◦

ΓB(fk,l)) ∈Mp(Mn)+ and this matrix is seen to be equal to

n2∑
j=1

Ψ(Bj)⊗Bt
j.

For the third statement, replace Ψ by t ◦ Ψ in the second statement. This shows Ψ is

completely co-positive iff
∑n2

j=1 Ψ(Bj)
t⊗Bt

j ∈ (Mp⊗Mn)+, and now applying the transpose

map gives (3).

We now point out that bases with the properties indicated in the Corollary are related

to entanglement witnesses. Indeed suppose B = {B1, . . . , Bn2} is a basis of Mn for which

Corollary ?? (1) holds. Taking Φ = I we have
∑

iBi⊗Bi ≥ 0. Let Φ : Mn →Mn be a map

that is positive but not completely positive. Define

B0 =
∑
i

Bi ⊗Bi and BΦ =
∑
i

Φ(Bi)⊗Bi.
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Then for any positive X, Y , since Φ ≥ 0, we have

〈BΦ, X ⊗ Y 〉 = 〈
∑
i

Φ(Bi)⊗Bi, X ⊗ Y 〉

= 〈(Φ⊗ I)B0, X ⊗ Y )

= 〈B0,Φ
∗(X)⊗ Y 〉 ≥ 0, (7)

and hence BΦ is ≥ 0 on all separable states. Since Φ is not completely positive, then BΦ 6≥ 0,

so there is a state A such that 〈BΦ, A〉 6≥ 0. Such a state is then entangled, so BΦ is an

entanglement witness.

EXAMPLES

Notation. If x, y ∈ Cn, then Rx,y ∈Mn is the rank one operator defined by Rx,yz = 〈z, y〉x.

Observe that Eij = Rei,ej .

Proposition 13. Let (λij) ∈ Mn, with all λij nonzero, and let B be the basis {λijEij}.

Then DB is an order isomorphism if and only if the matrix (λ2
ij) is positive semi-definite

with rank one. In that case, there are scalars α1, . . . , αn such that λ2
ij = αiαj, and if

C = diag(α1, . . . , αn), then D̃B = ΦC, and hence DB is a complete order isomorphism.

Proof. Note that for B as described in the proposition, the matrix for CB is diagonal for the

standard basis E of Mn, so CT
B = CB. Thus MB(Eij) = (CBC

T
B )(Eij) = λ2

ijEij.

Suppose that the map D̃B : Mn → Mn is an order isomorphism. We first consider the

case where D̃−1
B = MB = ΦC . Then ΦC(Eij) = λ2

ijEij, so

λ2
ijEij = CEijC

∗ = CRei,ejC
∗ = RCei,Cej .

The ranges of the two sides must coincide, so for each i there is a scalar αi such that

Cei = αiei. Substituting into the displayed equation gives λ2
ijEij = αiαjEij, so λ2

ij = αiαj.

Thus the matrix (λ2
ij) has rank one and is positive. Conversely, if (λ2

ij) is positive with rank

one, then there are nonzero scalars α1, . . . , αn such that αiαj = λ2
ij. If C = diag(α1, . . . , αn),

then one readily verifies that MB = ΦC . Then D̃−1
B is a complete order isomorphism, and

hence so is DB.

Now we examine the possibility that CBC
T
B = t ◦ ΦC . Then

λ2
ijEij = (CEijC

∗)t = C∗tEjiC
t.

11



Let D = C∗t, so that λ2
ijEij = DEjiD

∗. Then for all i, j

λ2
ijRei,ej = RDej ,Dei .

This implies that Dej is a multiple of ei for all i, j, which is impossible.

Example 14. If C ∈Mn is invertible, then ΦT
C = ΦCt , so ΦCΦT

C = ΦCCt . Hence for the basis

B = {ΦC(Eij)}, we have MB = ΦCCt , so by Theorem ??, B has the property that the map

from this basis to its dual basis is a complete order isomorphism. In particular, if {Fij} is

any system of matrix units for Mn, there is a unitary V such that ΦV satisfies ΦV (Eij) = Fij

for all i, j, and so the map from {Fij} to its dual basis is a complete order isomorphism.

On the other hand, if U : Mn →Mn is unitary with respect to the Hilbert Schmidt inner

product and takes E to a basis B, it need not be the case that the duality map DB is a

complete order isomorphism, as can be seen from Proposition ?? with λ11 = i and λij = 1

for (i, j) 6= (1, 1). Hence, not every orthonormal basis of Mn has the property that the

duality map is an order isomorphism.

For our next application we study the Pauli spin matrices.

Theorem 15. Let B = {σ0, σ1, σ2, σ3} be the Pauli spin matrices, i.e.,

σ0 =

1 0

0 1

 , σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 .

Then the duality map DB is a co-positive order isomorphism. Furthermore, let Ψ : M2n →

Mp be a linear map. Then Ψ is completely positive if and only if

3∑
i1,...,in=0

Ψ(σi1 ⊗ · · · ⊗ σin)⊗ σt
i1
⊗ · · · ⊗ σt

in

is a positive 2np× 2np matrix.

Similarly, Ψ is completely co-positive if and only if

3∑
i1,...,in=0

Ψ(σi1 ⊗ · · · ⊗ σin)⊗ σi1 ⊗ · · · ⊗ σin

is a positive 2np× 2np matrix.

Proof. Let CB be the linear map such that

CB(E11) = σ0, CB(E12) = σ1, CB(E21) = σ2, CB(E22) = σ3.
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Then the matrix for MB = CBC
T
B in the standard basis of M2 is

[CB][CT
B ] =


2 0 0 0

0 0 2 0

0 2 0 0

0 0 0 2


which is twice the matrix of the transpose map t : M2 → M2. Thus DB in this case is a

co-positive order isomorphism.

Applying Corollary ??, we see that a map Ψ : M2 → Mp is completely positive if and

only if
3∑

j=0

Ψ(σj)⊗ σt
j ∈ (Mp ⊗M2)+.

Using the explicit form of the Pauli matrices, we obtain that Ψ is completely positive if and

only if Ψ(σ0) + Ψ(σ3), Ψ(σ1) + iΨ(σ2)

Ψ(σ1)− iΨ(σ2), Ψ(σ0)− ψ(σ3)


is positive in M2(Mp), which is identical to Choi’s theorem.

On M2n the tensored spin matrices B⊗n = {σi1 ⊗ · · · ⊗ σin | 0 ≤ ij ≤ 3} form an

orthonormal basis which we will call the spin basis. The standard basis of matrix units of

M2n consists of the tensor products of the matrix units of M2. The map CB⊗n : M2n →Md
2n

taking the standard basis of matrix units to this spin basis is then the tensor product of the

maps on each factor M2, so (CB⊗n)(CB⊗n)T will be the transpose map on M2n . Thus the map

from the spin basis on M2n to its dual basis will also be a co-positive order isomorphism.

Again applying Corollary ?? yields that a map, Ψ : M2n → Mp is completely positive if

and only if
3∑

i1,...,in=0

Ψ(σi1 ⊗ · · · ⊗ σin)⊗ σt
i1
⊗ · · · ⊗ σt

in

is a positive 2np× 2np matrix.

Similarly, Ψ is completely co-positive if and only if

3∑
i1,...,in=0

Ψ(σi1 ⊗ · · · ⊗ σin)⊗ σi1 ⊗ · · · ⊗ σin

is a positive 2np× 2np matrix.
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For our final application we study the map from the Weyl basis to its dual basis. We

will compute the duality map for the Weyl basis, with the conclusion that this map is a

complete order isomorphism for n = 2, but is not an order isomorphism for n > 2. Below

n > 1 is a positive integer, and all indices are viewed as members of Zn.

Definition 16. Let e0, . . . , en−1 be the standard basis of Cn, and B = {Eab | a, b ∈ Zn} the

corresponding matrix units. Let U, V ∈Mn be defined by V ej = zjej and Uej = ej+1 where

z = exp(2πi/n) Then { 1√
n
UaV b | a, b ∈ Zn} is an orthonormal basis for Mn which we call

the Weyl basis W.

The unitary matrices {UaV b | a, b ∈ Zn} are usually called the discrete Weyl matrices or

the generalized Pauli matrices.

Lemma 17. Define CW ∈ L(Mn) by CW(Eab) = 1√
n
UaV b. With respect to the standard

basis of matrix units, we have the following matrix entries for CW and CWC
T
W :

[CW ]ab,cd = zdbδb+c,a and [CWC
T
W ]ab,cd = δb,−dδa,c−2d.

Proof. We have UaV bej = zbjEj+a,jej so

UaV b =
∑
j

zbjEj+a,j.

Thus

[CW ]ab,cd = 〈CW(Ecd), Eab〉

=
1√
n
〈U cV d, Eab〉

=
1√
n
〈
∑
j

zdjEj+c,j, Eab〉

=
1√
n

∑
j

zdjδj+c,aδj,b

=
1√
n
zdbδb+c,a (8)

Now

[CWC
T
W ]ab,cd =

∑
jk

[CW ]ab,jk[CT
W ]jk,cd =

∑
jk

[CW ]ab,jk[CW ]cd,jk.

In the first factor [CW ]ab,jk of the last sum we use the expression (??) for [CW ]ab,cd with

the substitutions c → j and d → k. In the second factor [CW ]cd,jk we use (??) with the
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substitutions a→ c, b→ d, c→ j, d→ k. We get

[CWC
T
W ]ab,cd =

1

n

∑
jk

zkbδb+j,az
kdδd+j,c.

The summands will be nonzero if and only if j = a− b = c− d (mod n). Thus

[CWC
T
W ]ab,cd =

1

n
δa−b,c−d

∑
k

zk(b+d).

The sum will be zero unless b+ d = 0, in which case it has the value n. Thus

[CWC
T
W ]ab,cd = δa−b,c−dδb+d,0 = δb,−dδa,c−2d.

Note that Lemma ?? gives

(CWC
T
W)(Ec,d) = Ec−2d,−d , (9)

so in particular CWC
T
W acts as a permutation on the basis of matrix units.

Corollary 18. For the Weyl basis W, the duality map DW is a complete order isomorphism

if n = 2, and is not an order isomorphism for n > 2.

Proof. If n = 2, then from (??) CWC
T
W is the identity map, and hence DW is a complete

order isomorphism.

Now let n > 2. Suppose first (to reach a contradiction) that CWC
T
W = ΦC for some

invertible C ∈ L(Mn). Then by (??),

E−d,−d = (CWC
T
W)(Edd) = ΦCEdd = RCed,Ced .

Thus for all d there are scalars λd of modulus one such that Ced = λde−d. Then

Ec−2d,−d = (CWC
T
W)(Ecd) = ΦC(Ecd)

= RCec,Ced = λcλdE−c,−d. (10)

This implies c− 2d = −c, so 2c = 2d mod n for all c, d. This is impossible for n > 2.

Now suppose CWC
T
W = t ◦ ΦC . Then again applying (??),

E−d,−d = (CWC
T
W)(Ed,d) = (ΦC(Ed,d))

t

= (RCed,Ced)t = (RCed,Ced
). (11)
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This implies that for all d, Ced is a multiple of e−d, and hence Ced is a multiple of e−d = e−d.

As above

Ec−2d,−d = (CWC
T
W)(Ecd) = (RCec,Ced)t

= RCed,Cec
= λcλdE−c,−d. (12)

This implies c− 2d = −c for all c, d, which again is impossible for n > 2.

Remark 19. The Weyl basis for n = 2 is slightly different than the Pauli spin basis. Indeed,

one has

1√
2
I =

1√
2

1 0

0 1

 ,
1√
2
U =

1√
2

0 1

1 0

 ,

1√
2
V =

1√
2

1 0

0 −1

 ,
1√
2
UV =

1√
2

0 −1

1 0


These are the Pauli spin matrices except for normalization and a missing factor of i in the

last. Again, applying Corollary ?? yields the usual Choi condition.

Recall that for the Pauli spin matrices we found CBC
T
B was the transpose map, so DB in

that case was co-positive.

Remark 20. Note that for M2n if we take tensors of the Weyl basis for M2, then we will get

another basis for which the duality map is a complete order isomorphism.

THE CONJUGATE LINEAR DUALITY MAP

Using the fact that Mn is a Hilbert space, we also have a canonical conjugate linear

isomorphism between Mn and its dual space. This map is unaffected by whether we make

the inner product conjugate linear in the first or second variable, so we use the physics

convention that inner products are conjugate linear in the first variable. Thus, the inner

product on Mn can be given by

〈A,B〉 = tr(A∗B)

and the conjugate linear Hilbert space duality map is given by

Dd : Mn →Md
n where Dd(A)(B) = tr(A∗B).
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The inverse of this map

Γd = D−1
d : Md

n →Mn

sends the linear functional fA(B) = tr(A∗B) to the matrix A which is the adjoint (i.e.,

conjugate transpose) of the density matrix.

Proposition 21. The duality maps Dd and Γd are conjugate linear complete order isomor-

phisms.

Proof. By Corollary ?? the linear map that sends a functional to its density matrix is a

co-positive order isomorphism. Hence, the map that sends a functional to the transpose of

its density matrix is a complete order isomorphism. But a matrix (cij) is positive if and

only if the matrix (cij) is positive. Thus, the duality map Γd, which sends a functional to

the adjoint of its density matrix is a complete order isomorphism. Consequently, so is its

inverse Dd.

The above result has a nice interpretation in terms of bases. Choi’s characterization says

that a map Φ : Mn →Mp is completely positive iff the matrix CΦ defined in (??) is positive.

As observed in Example ??, in the definition of CΦ, the basis {Eij} can’t be replaced by an

arbitrary orthonormal basis. The following result provides an alternate description of the

Choi matrix that does have this independence property. Recall that for a matrix B = (bij)

we set B = (bij).

Proposition 22. Let {Bl}n
2

l=1 be an orthonormal basis for Mn. A complex linear map Φ :

Mn →Mp is completely positive if and only if

n2∑
l=1

Bl ⊗ Φ(Bl) (13)

is a positive np×np matrix. The matrix in (??) is independent of the choice of orthonormal

basis, and equals the Choi matrix CΦ.

Proof. Let fA ∈Md
n be given by fA(B) = tr(A∗B), so that

Γd(fA) = A =
n2∑
l=1

〈Bl, A〉Bl =
n2∑
l=1

fA(Bl)Bl.

Thus, with respect to this basis

Γd(f) =
n2∑
l=1

f(Bl)Bl for all f ∈Md
n.
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Let (fij) ∈ Md
n be the matrix defined by Φ(A) = (fij(A)) for A ∈ Mn. Recall that by

definition, the matrix (fij) is positive iff Φ is completely positive. Using the fact that Γd is

a complete order isomorphism, we have that Φ is completely positive if and only if

(Γd(fij)) =
n2∑
l=1

(
fij(Bl)Bl

)
=

n2∑
l=1

Φ(Bl)⊗Bl (14)

is a positive np×np matrix. Using that fact that a matrix is positive if and only if its complex

conjugate matrix is positive, the proposition now follows by applying the *-isomorphism that

takes A⊗B to B ⊗ A.

Finally, since the matrix (fij) ∈ Md
n is determined by Φ, the matrix

∑
lBl ⊗ Φ(Bl) is

independent of the choice of orthonormal basis {Bl}. For the standard basis {Eij} the

matrix (??) is just the Choi matrix, and hence the matrix in (??) equals the Choi matrix

for all orthonormal bases {Bl}.

Note that the matrix in (??) is the partial transpose of the matrix J (Φ) defined by

Jamio lkowski, cf. (??).
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